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Abstract-The optical method of caustics is re-examined by considering the presence of dynamic
non-uniform crack-tip motion histories. Based on the higher order transient expansion obtained by
Freund and Rosakis (1990, Eleventh National Congress of Applied Mechanics; 1992, J. Mech.
Phys. Solids 40(3),699-719) and Rosakis el al. (1991, Int. J. Fract. SO, R39-R45), in which dynamic
transient effects were included in the near-tip deformation field, the exact mapping equations of
caustics are derived for non-uniformly propagating cracks. The resulting equations indicate that
the classical analysis ofcaustics based on the assumption ofKt-dominance, is inadequate to interpret
the experimental caustic patterns when dynamic transient effects become significant. In this paper,
an explicit relation between the instantaneous value of the dynamic stress intensity factor Kt{t) and
the geometrical characteristics of the caustic is established. This relation shows that for the case of
non-uniformly propagating cracks, the relation between the dynamic stress intensity factor and the
geometrical characteristics of the caustic pattern depends on the crack-tip acceleration and on
kt{t). It also reduces to the classical relation between Kt(t) and the caustic diameter for the case
of Kt-dominance (when the crack-tip fields are well described by the r- 1/2 singularity in stresses).
The Broberg problem is used as an example problem to check the feasibility of analysing caustics
in the presence of higher order transient terms. It is shown the value of the dynamic stress intensity
factor obtained by the proposed method agrees remarkably well with the exact analytical value
while large errors are introduced when the classical analysis (Kt-dominant) ofthe method ofcaustics
is used.

I. INTRODUCTION

The optical method of caustics, a technique based on geometrical optics, has several
advantages over the other light wave interference methods which are mainly related to its
simplicity. It requires a simple optical set-up which does not involve the use of diffraction
optics. It can be used easily either in transmission or in reflection arrangements. Data
analysis is simple and does not require the use of complicated image processing techniques.
The simplicity of the technique makes it an ideal candidate for high speed photography
applications. In particular, the fact that the physical principle ofcaustics does not hinge on
the availability of a coherent, monochromatic light source, has allowed for the use of high
speed camera systems which utilize white light illumination such as the Cranz-Schardin
type cameras. In addition, the lack of complicated optical components, such as diffraction
gratings, beam splitters, etc., in a caustic set-up ensures minimal light intensity losses which
are crucial for successful high-speed photography, especially when the exposure time is in
the order of nanoseconds.

The method of caustics has been initially introduced by Schardin (1959) and Manogg
(1964). Manogg used caustics in a transmission arrangement and gave the first quantitative
analysis. He showed that the geometrical characteristics of the caustic dep~nd on the nature
and intensity of the crack-tip singularity and was able to measure the intensity of the near
tip stress field. After Manogg's work, the method of caustics was extensively used by
Theocaris, who was also the first one to use this method in a reflection arrangement
(Theocaris, 1970, 1971). Later, Theocaris and Gdoutos (1974) applied the method of
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caustics in reflection to experimentally examine the deformation fields near the tips of
stationary cracks in metal plates, and this is the first application of the method to the
investigation of fracture in metals. Since the beginning of the 1970s, the optical method of
caustics has been developed into a successful experimental stress analysis method and found
wide applications, especially for the analysis of dynamic fracture mechanics problems.

There are two sets of simplifying assumptions that are customarily made in the various
applications of the method of caustics. One regards the analysis of the optical process
(transmission or reflection) and the other regards the nature of the mechanical fields under
study. In each of them, assumptions and simplifications are made in order to interpret the
caustic pattern quantitatively. The limitations introduced by the simplifications in the
optical analysis of the method ofcaustics as well as an exact geometrical optics interpretation
of the technique were thoroughly discussed by Rosakis and Zehnder (1985) and Rosakis
(1992). However the corresponding issue regarding the assumptions made about the
mechanical fields under study is more complicated and troublesome.

In linearly elastic dynamic fracture mechanics, the method of caustics was first used
in experiments involving very rapid crack propagation and stress wave loading by Kalthoff
et al. (1976), Katsamanis et al. (1977), Theocaris (1978) and Goldsmith and Katsamanis
(1979). In each case, it was assumed that the elastic stress field in the vicinity of a rapidly
propagating crack tip has precisely the same spatial variation as the elastic stress field near
the tip ofa stationary crack. That is, the influence ofinertial effects on the spatial distribution
of the crack-tip field was not taken into account. Kalthoff et al. (1978) introduced an
approximate correction factor to account for the error introduced when the static local field
is used in the interpretation ofcaustic patterns. Rosakis (1980) presented the exact equations
of the caustic envelope for elastic specimens containing rapidly growing cracks. He also
presented the caustic equations for the case of mixed mode plane stress crack propagation.
The above analyses all assume that the deformation field near the propagating crack tip is
Kf-dominant. This means that the stress field at a finite region near the crack tip can be
approximated accurately by the elastodynamic asymptotic singular solution (to within some
acceptable error). Based on this assumption, many experimental investigations of the
dynamic crack initiation, propagation and arrest have been carried out since then.

Recent experimental investigations by Krishnaswamy and Rosakis (1991) and ana
lytical results by Freund and Rosakis (1990, 1992) and Rosakis et al. (1991) have found
that the analysis ofcaustics based on Kf-dominance may n.)t always adequately characterize
the behavior of the deformation field in the vicinity of a transiently propagating dynamic
crack tip. Indeed the assumption of Kf-dominance is often violated during dynamic crack
growth. By relaxing the assumption of Kf-dominance, Freund and Rosakis (1992) have
suggested that under fairly severe transient conditions, a representation of the crack-tip
field in the form ofa higher order expansion (involving time derivatives ofcrack-tip velocity
and stress intensity factor) should be used to interpret the experimental observations.

In this paper, we re-examine the optical method ofcaustics by considering non-uniform
crack growth histories. The formation of the caustic image is briefly reviewed. In the
following sections, the exact mapping equations of caustics and the initial curve equation
are derived for a non-uniformly propagating dynamic crack. This derivation is based on
the theoretical results of Freund and Rosakis (1990, 1992) and Rosakis et al. (1991), which
allow both the crack-tip speed and the dynamic stress intensity factor to be arbitrary
differentiable functions of time. Then the explicit relation between the dynamic stress
intensity factor, Kf(t), and two geometrical dimensions of the caustic pattern, is established.
It is shown that the classical analysis of the caustics is a special case of this result under the
condition of strict Kf-dominance. Finally, in order to verify the accuracy of the analysis
developed in this paper, the Broberg problem is considered as an example problem of
transient crack growth. The exact caustic patterns are generated by using the Broberg
problem. These patterns are subsequently analysed by using both the classical analysis and
the improved method proposed here. The results show that the value of the dynamic stress
intensity factor obtained by the proposed method agrees remarkably well with the exact
analytical value while large errors are introduced when the classical analysis (Kf
dominance) of the method of caustics is used.
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2. METHOD OF CAUSTICS
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2.1. Mapping equations
Consider a plate specimen of uniform thickness, h, in the undeformed state. Let its

mid-plane occupy the xhx2-plane of an orthonormal Cartesian coordinate system. As the
specimen is subjected to applied loads, non-uniform gradients in the optical path of light
transmitted through it, or reflected from its surface, are generated. For a transparent
specimen, the gradients in the optical path are due to non-uniform changes in the thickness
of the plate and also due to stress induced gradients in the refractive index of the material
in the specimen interior. For an opaque specimen, the gradients in the optical path are due
to non-uniform surface elevations of the plate.

Consider further a collimated beam of light travelling in the x3-direction, normally
incident on the plate, as illustrated in Fig. 1. Under certain stress gradients, the reflected or
refracted rays will deviate from parallelism and form an envelope in the form of a three
dimensional surface in space. This surface, which is called the caustic surface, is the locus
of points of maximum luminosity in the reflected or transmitted light fields.

The deflected rays are tangential to the caustic surface. If a screen is positioned parallel
to the X3 = 0 plane, so that it intersects the caustic surface, then the cross-section of the
surface can be observed on the screen as a bright curve (the caustic curve) bordering a dark
region (the shadow spot). Suppose that the incident ray, which is reflected from or trans
mitted through point P(Xh X2) on the specimen, intersects the screen at the image point
P(Xh X 2). The (Xh X 2) coordinate system is identical to the (Xh X2) system, except that
the origin of the former has been translated by a distance Zo from the screen (zo can be
either positive or negative). The position of the image point P will depend on the gradient
of the optical path change L1S(x 10 X2) introduced by the specimen as well as on the distance
Zo and is given by Rosakis and Zehnder (1985):

(1)

where X = Xaca, X = x.e., IX :;; 1, 2, and ea denote unit vectors, and V denotes the two
dimensional gradient operator. Relation (1) describes the mapping of the points on the
specimen onto the points on the screen.

2.2. The initial curve and its significance
If the screen intersects the caustic surface, then the resulting caustic curve on the screen

is the optical mapping of the locus of points for which the determinant of the Jacobian
matrix of mapping equation (l) must vanish on the specimen, i.e.

(2)

Specimen Virtual Screen Specimen Real Screen

Zo _~.;-

0/2
Crack
Front

0/2

--
-:;::=~-F;:---~:::: ::::::.~-:._

(a)

------

(b)

0/2

Fig. l. Caustic formation in (a) reflection, (b) transmission.
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Equation (2) is a necessary and sufficient condition for the existence of a caustic curve. The
locus of points on the reference plane (x h x 2, X 3 = 0) for which the Jacobian vanishes is
called the initial curve whose geometry is described by eqn (2). All points on the initial
curve map onto the caustic curve. In addition, all points inside and outside this curve map
outside the caustic (Rosakis and Zehnder, 1985). Since the light transmitted through or
reflected from both the interior and the exterior of the initial curve maps only outside the
caustic, the area within the caustic remains dark and is customarily referred to as the
shadow spot. Also, since the light that forms the caustic curve originates from the initial
curve,essential information conveyed by the caustic comes from that curve only.

Equation (2), defining the initial curve, depends parametrically on zoo Thus, by varying
zo, we may vary the initial curve position. If Zo is large, the initial curve will be far from the
crack tip. If Zo is small, the initial curve will be close to the crack tip. Variation of Zo can
easily be achieved experimentally by simply varying the focal plane of the recording camera
system. This is an essential property of the method of caustics, and it can be utilized to
"scan" the near-tip region to obtain information regarding the nature of the deformation
field at different distances from the crack tip. For the present work, we require that the
initial curve is located outside the near-tip plastic and three-dimensional zones.

3. INTERPRETATION OF CAUSTIC PATTERNS IN THE PRESENCE OF TRANSIENT EFFECTS

3.1. Caustics generated by non-uniformly propagating cracks
For opaque specimens, caustics are formed by the reflection of light rays from the

polished specimen surface. The shape of the caustic curve depends on the near-tip normal
displacement U3 of the plate surface, initially at X3 = h/2, where h is the undeformed
specimen thickness. For transparent specimens the optical path change AS depends on both
local changes in thickness and on local changes in the refractive index. The change in the
refractive index An is given by the Maxwell relation:

An(xlox2) = D\(O'\I +0'22+0'33),

where D \ is the stress optic constant and O'ij are the nominal stress components. The above
relation is strictly true for mechanically and optically isotropic linear elastic solids.

For a cracked linear elastic plate of uniform thickness and finite in-plane dimensions,
the optical path difference AS, in general, will depend on the details of the three-dimensional
elastostatic or elastodynamic stress state that would exist at the vicinity of the crack tip.
This will be a function of the applied loading, in-plane dimensions and thickness of the
specimen. In the present work, we assume that the two-dimensional asymptotic analyses
provide adequate approximations for AS(xh X2)' In particular, it has been suggested that
the conditions of generalized plane stress will dominate in thin cracked plates at distances
from the crack tip larger than half of the specimen thickness (Rosakis and Ravi-Chandar,
1986; Yang and Freund, 1985), which implies that if the initial curve is kept outside the
near-tip three-dimensional zone, the resulting caustic could be interpreted as the basis of a
generalized plane stress analysis. Furthermore, in this paper, we also assume that the initial
curve is always kept outside the plastic and the fracture process zones, and this enables the
asymptotic elastic analysis to be employed to interpret the caustic pattern.

Under the aforementioned conditions, the optical path difference AS(xh X2) will be
(Rosakis, 1992):

(3)

where

c = 1E~D, - i (n - I») ~ '. fortmnsrnission,

for reflection,

and E and v are the Young's modulus and the Poisson's ratio of the material respectively,
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Cu is called the stress-optical coefficient, and all and 0'22 are thickness averages of the stress
components in the solid. These stress components will be provided by the generalized plane
stress solution of the elastostatic or elastodynamic problem under investigation.

Consider a planar, mode-I crack that grows through a two-dimensional, homogeneous,
isotropic, linearly elastic solid, with a non-uniform speed v(t), along the positive XI
direction. (Xl> X2) is a coordinate system which translates with the moving crack tip.
The asymptotic stress around the tip of a non-uniformly propagating dynamic crack was
presented by Rosakis et al. (1991). Let the scaled polar coordinate system (r[, el) and (r., es)

be defined as :

rl:S(t) = xi + IXI:s(t)X~,

el,s(t) = tan- l {1X1,s;;X2},

2 v2(t)
IXI.s(t) = 1- -2-'

CI,s

where Ct and Cs are the longitudinal and shear stress wave velocities of the elastic material,
respectively. Then, the first stress invariant corresponding to the fully transient dynamic
crack is (Freund and Rosakis, 1992):

+ {~;2 A2(t) cos~ + Di {Ao(t)} [ (1- ;C~2)cos~ + :;2 cos 3:IJ
+ ~Bl(t{(1- ;I:)cosi - (1- ~;I:)COS 3:, + 1~:12 cos 7:

IJ}ri/2 +O(rl), (4)

where

4 1+1X; d
Ao(t) = h:. D( ) K) (t),

3f1.v 2n v

3v 1/2(t) d
Di{Ao(t)} = - -2-2--d {V

I
/
2(t)A o(t)}

IXI Ct t

and Kt(t) is the dynamic stress intensity factor at the crack tip, p and Jl are the mass density
and the shear modulus of the elastic material, respectively.

By substituting the above expression for the first stress invariant into the optical path
difference relation (3), the mapping equation (1) becomes:
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(6)

(7)

The initial curve defined by eqn (2) is:

I { } db] 4 [(15v
2

)2 15v
2

I d-D. Ao(t) g.(el)+BI(t)g.(el) ',- + - 8c.2 A 2(t) + 8Cl2 A 2(t)D. {A O(t)}g2(e,)

+ (Di {Ao(t)} )2[f11 (e l )f12(e.) - (f12(e2»2]

{
15v2 b I { } d b d b- BI(t) 8c.2 A 2(t)g2(e.) +D, Ao(t) [!del)! I. (e.) -! I' (e.)! 22 (el)

- 2!12(e.)f~2(e.)]} - BI2(t)[!~I(e.)f~2(e.) +(f~ 2(e,»2]}I- 3} = 0,

where
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In the expressions above, Ao(t) i~ determined by the dynamic stress intensity factor
history, Kt(t), and the propagating speed of the crack tip, v(t). DUAo(t)} depends not
only on Kt(t) and v(t), but also on the time derivatives of these quantities. Besides Kt(t)
and v(t), B,(t) also depends on the acceleration of the crack. From the first stress invariant,
eqn (4), we can see that the dynamic transient effects, DUAo(t)} and BI(t) inter the
expression only through the second and the third terms. If we also want to investigate the
higher order time derivatives of Kt(t) and v(t), we have to use higher order terms in the
asymptotic expansion of stress. The coefficients A ,(t) and A 2(t) are undetermined by the
asymptotic analysis. Their values can only be determined for particular initial/boundary
value problems. It should be observed at this point that the 01 variation of the higher order
terms in relation (4) is different from that of the steady-state higher order expansion
presented by Dally et af. (1985). Relation (4) reduces to the steady-state case only if both
Kt and v are constant.

From the expressions above, we can also see that if the crack-tip speed v(t) is a constant,
i.e. v(t) = 0, and therefore B,(t) = 0, eqns (5), (6) and (7) give the caustic mapping equation
and the initial curve equation corresponding to transient crack growth under constant
velocity and varying stress intensity factor. Furthermore, if the time derivative of the
dynamic stress intensity factor, kt(t) is also zero, DUAo(t)} will be zero. In such a case,
eqns (5), (6) and (7) describe the caustic curves corresponding to steady-state crack growth
evaluated on the basis of a three term steady-state expansion for the stresses. If in addition,
A 2 vanishes, these relations exactly reduce to the results obtained under the assumption of
Kt-dominance (Rosakis, 1980). For stationary cracks (v = 0), DUAo(t)} and B}(t) all
vanish even if k[ ¥= O. Depending on whether the loading is dynamic or not, A 2 may be
either a constant or a function of time. If A 2 happens to vanish, then a situation of K[
dominance is established outside the near tip three-dimensional zone and the equations of
the caustics reduce to those of an epicycloid (Theocaris, 1981).

3.2. Relation between the dynamic stress intensity factor and the geometrical dimensions of
caustics

For a given specimen with a straight mode-I crack, if the initial conditions and the
boundary conditions are prescribed, and also if the crack propagation history, i.e. the
propagating velocity of the crack tip v(t), is known, then the history of the dynamic stress
intensity factor, Kt(t), can be determined. Consequently, DUAo(t)} and B,(t), which
depend on the dynamic stress intensity factor and the crack-tip velocity as well as on their
time derivatives, can also be determined, and so can the coefficients Al(t) and A 2(t).
According to eqns (5), (6) and (7), the shape of the initial curve and the caustic pattern
corresponding to this dynamic crack propagation process for each instant of time can be
calculated. However, in laboratory situations the inverse problem is encountered. That is,
the values of Kt(t), DUAo(t)}, B}(t), A} (t) and A 2(t) have to be determined from the
caustic pattern. Indeed, in dynamic fracture experiments we need to establish a method of
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infering the stress intensity factor history from local near tip measurements, since the
boundary/initial value problem is usually too difficult to solve. In this section, we provide
the main steps of the derivation of the relation between the dynamic stress intensity factor
and some experimentally measurable quantities (i.e. geometrical characteristics of caustic
and crack-tip velocity).

Since the caustic mapping equations (5) and (6), and the initial curve equation (7) are
too complicated, we now make the assumption that vic, « 1. This assumption is realistic
since in most solids terminal crack growth velocities do not exceed a speed of 0.2c" or
approximately 0.5CR before branching. CR is the material Rayleigh wave speed in plane stress.
It is thus felt that assuming that vic, « I will lead to a useful and accurate simplification for
the mapping equations. By making this simplification, eqns (5) and (6) become:

r, sin 8, { A 3/2. 381 A /2 . 81 I A 2(. 8, . 58,)}
X 2 =-a-I-+ IX, K(t)r,- SInT-A(t)r,-' SIn2"+2 B (t)r,-'/ 3SIn2"+SInT '

(9)

and the initial curve equation associated with the above mapping equations are obtained
by requiring that the Jacobian of the above transformation vanishes, i.e.

(10)

where

Now, given experimentally obtained caustic patterns and an appropriate numerical scheme,
eqns (8), (9) and (10) can be used to obtain the values of K(t), A(t) and B(t) as functions
of time.

Since the initial curve equation (10) is still too complicated to use, and in an attempt
to retain some of the simplicity of the classical analysis of caustics one can introduce a
simplifying assumption regarding the nature of the initial curve by assuming that the initial
curve remains a circle of radius ro(t), i.e.
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(II)

which implies that the size of the initial curve is only determined by the instantaneous value
of the dynamic stress intensity factor, as well as the propagating velocity of the crack tip,
rather than the time derivatives of these quantities. By substituting rl = ro(t) into the
mapping equations (8) and (9), the parametric equations of the caustic are obtained as
follows:

{
2 [ 301 A(t)ro 0, B(t) (0, 501)]}

X,=ro cOSO'+3iXl cosT- K(t) rocos"2-2Kft) cos"2-cosT '

{
sin 01 2 [. 301 A(t)ro. 0, B(t)ro ( . 0, . 501)]}

X 2 =ro ~+3 slnT- K(t) Sin "2 + 2K(t) 3sln"2+ sln T .

(12)

(13)

For A(t)ro/K(t) --+ °and B(t)ro/K(t) --+ 0, eqns (12) and (13) reduce to the parametric
equations for dynamic caustics obtained on the basis of Kt-dominance (Rosakis, 1980).
The validity of the assumption regarding the circularity of the initial curve will be justified
in Section 4 in connection with the Broberg problem.

The two caustic curve dimensions chosen in this analysis are the maximum transverse
diameter D of the caustic and the distance between the point of intersection of this diameter
with the Xi-axis and the front point ofthe caustic. This length will be denoted by X. These
lengths are shown in Fig. 2. If the end point of the caustic diameter has coordinates X~O)

and X~O), respectively, and if the front point of the caustic curve, has coordinates X~F) and
Xr) = 0, then one can use the mapping equations (8) and (9) to write:

Xr) =0,

1 (0(0) 50(0»)
- 2B(t)rfjI /

2 cosT -cos+ '

. 0(0) { 30(0) 0(0)
X (O) roSin I KA() -3/2' I AA() -1/2' I

2 = iX, + iX, t ro sln-2- - t ro slnT

(14)

(15)

(16)

where Of0) is the angular coordinate of the point (ro, Of0» on the initial curve that maps

Fig. 2. Evaluation of the dynamic stress intensity factor Kt(t) by measuring two geometrical
dimensions, D and X.
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onto the point (X\D) , X?», where X2is maximum. Since at this point, X 2 is a local maximum,
the following condition has to be met:

(18)

The relations between the experimentally measurable quantities, D and X, and the
points (X\D) , X~D» and (X\F) , X~D», are:

D = 2X~D),

Then, the relations that should be used to obtain the unknown coefficients are:

(19)

(20)

X (2 2 3(10») (0(0»)-= l+--cosOID)--cos-- -A(t)ro 3/ 2 1-cos-l -
ro 3tX, 3tXI 2 2

1 (0(0) 50(0»)+ -B(t)ro 3
/
2 cos-1- -cos-I- (22)

222

and

1 (ax) (cos 0(0) 30(0») 1 0(0)- _2 = __1_ +cos-I - _ -tX1A(t)ro3l2cos-l-
ro a01 6,=6fD) tXl 2 2 2

1 ~ (010) 5010»)
+ 4tX1B(t)ro3/2 3coST +5cos-

2
- = O. (23)

In the above expressions, relation (11) between K(t) and ro has been used. It seems that
there are only three equations, (21), (22) and (23), but four undetermined parameters, ro
(or K(t», 010), A(t) and B(t). However, if the crack propagating velocity, v(t) and thus v(t)
are independently known, then B(t) is related to K(t) by:

~ 2v(t) ~
B(t) = 42"" K(t),

tXl CI

and thus B(t) and K(t) are not independent variables. So actually there are only three
undetermined parameters, and they can be obtained by solving eqns (21), (22) and (23).
By eliminating A(t) and B(t) from eqns (21), (22) and (23), we obtain the relations:

(25)

where
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(e(D» _ 2(sin elD
) 2. 3e1D»)U.. - --+-sm--,

a. 3 2

2 ( 0(0) 50(0»)
u2(eID» = 3 3sinT +sin+ '

2 [ 2 ( O(D»)J 2 (2 0(0») 30(0)I. ((JID» = 1+- - 1+2" sec-1- -I cos ofD) + - - -sec-I- cos-I _,
3al at 2 al 3 2 2
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In the above expressions, the prime denotes differentiation with respect to the argument
OfD) • Consequently, when D and X are measured, '0 and OfD) can be obtained by solving
eqns (24) and (25), and therefore, the dynamic stress intensity factor, Kt(t), can be obtained
from relation (11).

To be more explicit, we solve eqn (24) for '0, which then can be expressed as:

(26)

where

0(0)
G 1(eID» = Ul (OlD» -2U'. (OlD» tanT'

0(0)
G2(01(D» =u2(OID» - 2u;(elD» tanT.

By using eqns (II) and (26), the dynamic stress intensity factor can be expressed as:

(27)

The above expression still contains an undetermined parameter, eID
). However, if eqn (25)

is solved for '0, we have:

Consequently, the angle efD) that appears in the above equations is the root of the following
trigonometric equation:

(28)

Under the fully transient dynamic condition, eqns (27) and (28) give the final relation
between the dynamic stress intensity factor, Kt(t), and the experimentally measurable
quantities, D and X.

It should be pointed out that for the case of a non-uniformly propagating crack, the
dynamic stress intensity factor, Kt(t) measured from the caustic patterns, is explicitly
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related to the crack-tip acceleration, v(t). It is also implicitly related (through OfD)) to
K1(t). The coefficient A 2(t) can also be obtained in the following way:

and

(30)

where TolD is given by eqn (26) and OfD) by eqn (28) in terms of the measurable quantities
X and D. Once the caustic diameter D is measured at different times, A 2(t) is determined
from (30), provided that many sequential measurements of caustic patterns are available
and if the time derivative in the formula can be evaluated by some numerical procedures.

In an experimental situation, caustic patterns are photographed and D and X are
measured. Equation (28) is then used to obtain O}O), substitute it into eqn (27) and thus
obtain Kt{t). From eqns (29) and (30), coefficient A 2(t) can also be determined.

For the case ofconstant velocity, B(t) = 0 (v(t) = 0), eqn (27) corresponds to transient
crack growth under constant velocity and varying stress intensity factor. Equation (30)
then gives an explicit relation between XID and 8}0). If the time derivative of the stress
intensity factor, K1(t), is also zero (steady state), then DUAo(t)} = O. For both v(t) = 0
and steady state, the relation between the dynamic stress intensity factor, Kt{t), and the
caustic diameter, D, have the same form. The only difference comes in the value of O}O) ,
which is directly related to the ratio XID. For the transient constant velocity case (v(t) = 0,
K1(t) '# 0):

(31)

For the steady state case (v(t) = 0, K1(t) = 0) :

(32)

or, in this case, A 2 is directly related to the caustic diameter.
Furthermore, if we only retain the singular term in the asymptotic stress expansion,

then in the caustic mapping equations (8) and (9), and the initial curve equation (10) ..4(t)
and B(t) will be zero, and eqns (8), (9) and (10) reduce to the same equations used in the
classical analysis (Rosakis, 1980). If we still make the assumption of (11), the unknown
parameters will reduce to two (i.e. K1(t) and O}O)), and so we only need to measure one
quantity from the caustic pattern, say the diameter, D. By using eqns (21) and (23), the
dynamic stress intensity factor corresponding to the classical analysis can be determined.
Now eqn (27) becomes:

Also, if ..4(t) and B(t) are set to zero, the maximum condition (23) requires that

(
OlD) 3ll(0))

g'I(O}O)) = 2~ +cos_
U
_
I- = 0

!XI 2

(33)

(34)

and this will provide the value of O}O) as a function of crack-tip velocity, v. Now define
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I S 3.17 }5/2
C(v) = IXIF(v) 191 (0[0» ,

where C(v) is a function of the crack-tip velocity, v. Equation (33) can be rewritten as:

887

D 5/ 2

K1(t) = C(v) 10.7zoch' (35)

which has the same form as that given by Rosakis et al. (1984). Equation (35) is the result
of the classical analysis of the caustic pattern and is widely used in the experimental
interpretation of caustics corresponding to elastodynamic crack propagation.

Moreover, as v = 0 (stationary crack), IXI = I, F(v) = 1 and g'l (0[0» = 0, which gives
0[0) = 00 = 72°, and gl(O[O» = 3.17, then C(O) = I and (Theocaris, 1981; Beinert and
Kalthoff, 1981) :

d 2j2; ( D )5/2
K 1 (t) = 3chzo 3.17 (36)

This equation holds not only for the stationary crack subjected to dynamic loading, but
also for the static problem, where K1(t) should be replaced by K1•

4. AN EXAMPLE: THE BROBERG PROBLEM

4.1. The caustic pattern corresponding to the Broberg problem
In order to illustrate the effect of the higher order terms in caustic patterns obtained

for the case ofhighly transient crack growth problems, and to check the ability ofeqns (27)
and (28) to furnish the correct values of K1(t), the solution of a particular e1astodynamic
boundary value problem is considered. This is the plane stress problem of a crack growing
symmetrically from zero initial length at constant velocity under uniform remote tensile
stress a 00" The plane of deformation is the x'), xl-plane and the crack lies in the interval
- vt < X'I < vt, Xl = 0, where v is the constant speed ofeither crack tip. This is the problem
first analysed by Broberg (1960).

An expression for the first stress invariant directly ahead of the crack tips is obtained
by Freund (1990). On the line Xl = 0:

(37)

where l(v/cs) is a known function of v, and

Focusing on the crack tip moving in the positive x'I-direction, and expanding eqn (37) in
powers of Xl = X'I-Vt near Xl = 0, we obtain:

K1(t) { _ 1/2 I[1 !'(1/V)] 1/2} 1/2
all +a22 = W(v) j2; XI + vt 2+ vf(1/v) XI +o(x l ), (38)

where

(
_2(1+1X;)(1X?-1X;)

W v) - D(v) , (39)
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Kd() c;I(v/c,)D(v) c=
I t = 2 (Jocoy1Wt.

IXIV
(40)

If the expansion (38) is compared with the general expansion (4), in which BI{t) =°
(v(t) = 0), and 01= 0"1 = Xl> and terms of like powers in distance from the crack tip are
collected, then explicit relations for the coefficients in the expansion are obtained as:

Ao{t) = ~ r;'(v)z Kf(t) = 2J2 (1 +(I.;)I(~/C,) (Joco j;t,
3 IXI - (I., JlJht 3 IXI (l - (I., ) Jl

I{ } ( I) W(v) Kf(t) h2(l-IXIZ)(l+IX;)I(v/c,)(Joco I
D J Ao{t) = 1- 2 -Z--2 [;;;:. = -y £. 3 2 C'

(1.1 (1.1 - IX, Jly 2nvt (1.1 (l- IX,) J.I. y vt

AI(t)=O,

2[5 5 1'(I/V)J W(v) Kf(t)
A 2{t) -- -+-+-- ----==-

- 15 4 4(1.? vf(l/v) IX?-a.; JlJhtvt

= 2J2 [~+ 52 +1'(I/V)J (1 +a.;)I(~/c,) (Joco _1_.
15 4 (1.1 vf(l/v) IXI(l-a.,) Jl j;t

Since the coefficients of DUAo{t)} and A 2(t) are proportional to I/Jf, the third term in
the near tip asymptotic expansion of the first stress invariant is very large during the early
stages of crack growth, possibly dominating the square root singular term. As a result, even
though the crack-tip speed is constant, transient effects do exist in the near tip field.

For this particular problem, we normalize the caustic mapping equations (5) and (6),
and the initial curve equation (7) with the length '0 = (3(1.IK/2)215. This length is related to
the value of the dynamic stress intensity factor, Kf{t), of the Broberg problem by eqn (11).

The normalized caustic mapping equations and the initial curve equation then become:

XI ('1) 2 ('1)-312 381 2 ('o){[5 5 I'(l/V)J (JI-= - COSol+- - cos--- - -+-+-- cos-
'0'0 3a.1 '0 2 3(1.1 vtl 4 4a.? vf(l/v) 2

[(
v

2
) (J v

2
50 J}(' )- 112-2 1- -2 COS-.! - -2COS_I ---.!. ,

4cI 2 8cI 2 '0

X2= (!i) sin 01 +~(!i)-3/2 sin30I_~('o){[~+~+I'(I/V)Jsin~
'0 '0 (1.1 3'0 2 3 vt 4 4(1.1 vf(l/v) 2

[( 3V2) (J v
2

50 J}(' )-1/2-2 1- -2 sin-.! - -2sin-' ---.!. ,
4cI 2 BCI 2 '0

and

(41)

(42)

(43)
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where the functions f~P(()l)' and g~(e,) are defined in the previous section [see eqn (7)]. We
can see that the coefficients of higher order terms in the non-dimensional caustic mapping
equations and the initial curve equation, are proportional to a non-dimensional parameter
, olvt. Relations (40) and (I I) provide an expression for,olvt with respect to time after crack
initiation and Zo as follows:

'0 = {_3_ (I +aDI(vlcs) crr"" }2/5(N)4/5
vt 4.J2 I -0:; I -v cst '

(44)

where c is a material constant and is given by eqn (3). For a given experimental set up and
specimen, c, rr00 and h are fixed. In particular the distance between the specimen and the
focal plane of the recording camera, z 0, is set prior to the experiment.

As t ~ 00, the ratio 'olvt vanishes and eqns (41)-(43) reduce to the classical analysis
of dynamic caustics obtained on the basis of Kf-dominance. Indeed this is consistent with
the fact that as t ~ 00,

which indicates that steady-state and Kf-dominant conditions are approached. For a fixed
time t > 0, the ratio 'olvt may vanish only as Zo ~ O. For this case, the initial curve shrinks
to the crack tip and even if Kf(t) =F 0, the caustic is generated from a Kf-dominant region.
For a fixed zo, at short times after crack initiation, 'olvt~ 00 (Kf(t) ~ 00), and therefore
transient effects are predominant. So the change of the non-dimensional parameter 'olvt
from zero to infinity characterizes the relative influence of transients on caustic shape and
size.

A qualitative discussion of the influence of higher order terms and crack-tip velocity
on the caustic and initial curve shapes is presented in Figs 3 and 4. Figure 3 shows the
influence of crack-tip velocity on the caustic mapping for 'olvt = 0.3. It is obvious that in
the range 0.1 ~ vlcs~ 0.5, changes in crack-tip velocity do not markedly influence the
caustic shape. The initial curve also remains almost circular. The results displayed in Fig.
4 are more striking. Here, the crack-tip velocity is fixed (vlcs = 0.3). The ratio 'olvt is varied
to investigate the effect of transients. Indeed, variation of,olvt from 0 to 1.0 creates rather

vI; • O.i
vlcs • 0.3
vI; • 0.5

Poisson's ratio Y • 0.3, rolvt • 0.3

Fig. 3. Three-term simulations ofthe initial and caustic curves corresponding to the Broberg problem
for different crack-tip velocities, and for fo/vt = 0.3.

$AS 30:7-8
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Poisson's ratio Y • 0.3, vlcs • 0.3

Fig. 4. Three-term simulations of the initial and caustic curves corresponding to the Broberg problem
for different values of To/VI, which represents the scale of the transient effects, and for vic, = 0.3.

large variations in caustic shape. The value of ro/vt = 0 corresponds to the caustic shape
obtained by the classical (Kf-dominant) analysis of caustics. The differences in D and X
observed for other values of ro/vt are an indication of the error in Kf measurement if the
classical analysis of caustics is used. On the other hand, it is very interesting to note that
the initial curve is hardly influenced by the value of ro/vt. It remains almost perfectly circular
with a radius rl = ro as assumed by eqn (11) of our analysis. The center of the circle is
moved backwards slightly as the value ro/vt becomes relatively larger. The major assumption
pivotal to the derivation of the relation between Kf(t), D and X [eqns (27) and (28)] is the
circularity of the initial curve [eqn (11)], and we feel that this provides a strong justification
for our simplifying assumption.

4.2. Comparison of the dynamic stress intensity factor obtained from different measurement
methods

The main purpose of this section is to verify the feasibility and accuracy of the
measurement method proposed in Section 3.2 [eqns (27) and (28)]. This method provides
a relation between the dynamic stress intensity factor at the tip of a transiently propagating
crack in terms of experimentally measurable dimensions of the caustic curve. We are also
interested in comparing values of Kf obtained from various measurement techniques, and
to access their relative accuracy. More specifically, the classical analysis of caustics, which
is based on the assumption of Kf-dominance, will be compared with the method presented
above. To implement this objective, the exact caustic patterns are generated for the Broberg
problem by using eqns (41), (42) and (43). Then measurements are performed on these
exact caustic patterns either by the classical analysis method or by the method proposed
here.

In the classical analysis of the caustic pattern, the only quantity to be measured is the
diameter of the caustics, D, and this quantity is related to the dynamic stress intensity
factor, Kt(t) by relation (35) for different crack propagating velocities. In the method
presented in Section 3.2 [eqns (27) and (28)], the determination of Kf(t) also requires the
evaluation of another parameter, OfD) • To calculate OfD) , two dimensions of the caustic need
to be measured. One is the transverse diameter, D, and the other, X, is the distance from
the intersection of this diameter with the Xl-axis to the front point of the caustics. The
parameter OfD) is then given by solving eqn (28), which involves D and X as well as their
ratio. Since the velocity of the crack is constant in the Broberg problem, eqn (28) implies
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vi, • 0.1
vi, • 0.2
vic• • 0.3
vi, • 0.4
vi, • 0.5

.55.50

Po1sson's raUo Y • 0.3
50 '-- ---I -&. -.-;:__...J

.45
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80

....
o......
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X/D

Fig. 5. Value of the parameter 0/0
). solved by eqn (26), versus the ratio XID, for different crack-tip

velocities.

that OlD) is a function of the ratio X/D only. Figure 5 presents the variation of the parameter
OlD) versus the ratio X/D for different crack-tip propagating velocities. As we can see from
this figure, the parameter OlD) is very sensitive to the ratio of X/D, but is not sensitive to
the crack-tip velocity. The effect of transience on X/D is shown in Fig. 6. Figure 6 gives the
variation relation between the ratio X/D and the non-dimensional parameter ro/vt. It is
shown that when the stress state around the crack tip deviates from Kt-dominance (ro/
vt ~ 00), the ratio X/D deviates from its steady-state value which implies that the caustic
becomes more elongated in the XI-direction due to the existence of transient effects for this
particular problem. Since the parameter OfD) is very sensitive to the X/D, the accurate
measurement of X and D becomes a crucial aspect of the new interpretation method.

•520 ~---....----~---.....---.......-----.

.515

.510

~ .505

.500

.495

vi, • 0.1
vies· 0.2
vi, • 0.3
vi, • 0.4
vlcs • 0.5

Po1sson's ratio Y • 0.3

1.0.2 .4 .6 .8

tOCIM:NSICIW. PAFWETER. roIvt

.490 '- 1-- 1--__......1--__--'1-..__--'

.0

Fig. 6. Ratio XID versus the non-dimensional parameter rolvt, for different crack-tip velocities.
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Quantitative estimates of the error incurred by the classical interpretation of caustics
during crack growth are presented in Fig. 7. Here the rati,o K1(caustic)/K1(theo.) is presented as
a function of the parameter ro/vr for different crack-tip velocities. As anticipated earlier, as
ro/vr -+ 0 the classical analysis becomes accurate (either zero initial curve or a long time
after initiation). However, as ro/vt -+ 00, we observe large deviations of K1(caustiC) relative to
K1(theo.), which is known already (see lines with square symbols). The figure also presents
the same ratio obtained if the numerically constructed caustics are analysed on the basis of
our improved method [eqns (27) and (28)]. As is obvious from the lines marked by the
circles, errors of less than 5%, which are acceptable in the experimental investigation of
dynamic fracture mechanics, are obtained. In both cases it is shown that the effect of
velocity is small especially when the improved analysis is used. The 5% relative error
observed in this figure is caused by the assumption of circularity about the initial curve.
Once again, the validity of this assumption is justified.

An alternative representation of the above results is given in Figs 8-10. Here
K1(caustic)/K1(theo.) is plotted versus time from crack initiation. The results of both improved
and classical analyses of caustics are included. Figure 8 shows the variation of this ratio
for a variety of crack-tip velocities for material parameters corresponding to 4340 steel,
Zo = 2.0m, and specimen thickness h = 0.01 m. It indicates that the classical analysis of
caustics becomes accurate only after a certain time from crack initiation. Figure 9 shows
the same ratio as a function of time for different values of (100/E, but the material parameters
correspond to PMMA. This figure indicates that for a higher load level, the transient effect
is much more significant than for the lower load level, especially at the time near the crack
initiation. This reflects the fact that at a specific time t and fixed zo, higher (100/E implies
larger initial curve radii [see eqn (44)]. It is seen from these two figures that as t < 20 j.ts,
big errors have been observed when the classical analysis is used. From the Broberg problem,
we have ktlK1 = 1/2t. So for this particular problem, as ktlK1 > 2.5 x 104

S-I, transient
effects cannot be neglected, and this gives an estimate of k1 for which the improved method
promises to provide accurate values of K1.

Figure 10 shows the dependence of this ratio on zoo Here, it is evident that as Zo is
decreased (the initial curve shrinks to the crack tip) the value of K1(caustic) obtained from the
classical analysis ofcaustics slowly approaches K1(theo.). Nevertheless, large errors still persist
near initiation. From the practical point of view, this is not a consolation since acceptable
reductions of Zo (and thus ro) are limited by the size of thr:: near tip three-dimensional zone

2.0 r-----,----.,...---..,....----r----....,
vlcs • 0.1 Poisson's rlltio v • 0.3
vie, • 0.2
vie, • 0.3
vlcs • 0.4
v/cs ·0.5

C clllssiClll _lysis. equIItlon (35)
o modlflecl Mthod. IqUIItlons (27) IIIld (28)

1.0.8.6.4.2

.0 I-.- ""'- ~ --a. "_ ....I

.0

ro'vt

Fig. 7. Comparison of the dynamic stress intensity factor inferred from the modified method and
the classical analysis for different values of 'a/vt, and for different crack-tip velocities.
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Fig. 8. Variations of the ratio Kt(cau,fjc)1Kt('heo.) with the time after crack initiation for different crack
tip velocities. The material parameters correspond to 4340 steeL

("'O.5h). Here the advantage of the modified interpretation becomes clear since accurate
results can be obtained with relatively large values of Zo corresponding to caustic measure
ments outside the near tip three-dimensional zone.

5. DISCUSSION AND CONCLUDING REMARKS

Motivated by recent experimental evidence (Krishnaswamy and Rosakis, 1991;
Krishnaswamy et al., 1992) that shows the inadequacy of the classical analysis of caustics
in furnishing accurate values of Kt in the presence of transient effects, a modified analysis
ofthe technique is presented here. This analysis is based on a fully transient higher order
expansion recently developed by Freund and Rosakis (1992). The improved analysis of
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Fig. 9. Variations of the ratio Kt(caU5,;c)1Kt('heo.) with the time after crack initiation for different load
levels, u001E.
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Fig. 10. Variations of the ratio K1(causliC)/K1(theo.) with the time after crack initiation for varying
experimental parameter zoo

caustic patterns includes the influence of transients resulting because of the existence of
non-uniform Kf(t) and v(t) histories [effects of Kt{t) and ti(t)]. The analysis can be used
to obtain Kf(t) as well as the values of higher order terms in terms of the geometrical
characteristics of the caustic curves. The resulting expressions contain the classical results
(static or dynamic Kf-dominant analyses) as special cases. The relative performance of the
improved and the classical analyses is compared. This is done by considering the Broberg
problem as an example model of transient crack growth. Based on the full Broberg solution,
the caustic curves are first constructed numerically. These curves are then analysed to
obtain Kf(t), as would be done in an experiment, and to compare with the theoretically
known Kf(t) time history. When the caustics are analysed on the basis ofeqn (35) (classical
Kf-dominant analysis) very large errors are obtained at times close to crack initiation. As
a matter of fact, for this problem, such errors are unbounded as t --+ O. On the other hand,
when eqns (27) and (28) are used in the analysis of the caustic patterns, the measured
Kf(t) agrees very well with the theoretical value (to within 5%). This clearly indicates that
the improved analysis of caustics, based on the higher order transient expansion, is capable
of providing accurately the dynamic stress intensity factor history even if the crack growth
event is very transient.

Another noteworthy fact is that the crack-tip propagating velocity is assumed to
be known in the analysis. However in real applications, the crack-tip position is only
approximately known, since the crack tip is covered by the dark shadow spot. This problem
can be overcome either by simultaneously using some other measurement techniques which
can provide the crack-tip position at each instant of time, or by the following iteration
procedure. At the beginning ofthe iteration process, we can assume that the caustic diameter
D passes through the crack tip. As a result, X represents the distance from the crack tip to
the front of the caustic curve. After the crack-tip position is determined by this assumption,
an approximate crack-tip velocity history can be deduced. By carrying out the measurement
method we proposed in Section 3.2, all parameters will be determined. If we now go back
to eqn (8) to calculate the "real" distance from the crack tip to the caustic front, then the
velocity history will be corrected. This procedure will be repeated until the crack-tip velocity
converges at each instant of time.

The shortcomings of the classical analysis of caustics discussed in this paper may have
far-reaching consequences. In particular, caution should be exercised in the interpretation
of experimental measurements obtained by caustics in the past, especially when highly
transient crack problems were studied by the technique.
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During the past two decades, the optical method of caustics has been widely used in
experimental solid mechanics, especially in the study ofdynamic fracture processes. Another
method, which is also widely adopted, is photoe1asticity. The history of photoelasticity is
much longer than the method ofcaustics and therefore can be thought ofas well developed.
Nevertheless, due to the simplicity of the method of caustics either in the experimental set
up, or in the data analysis, both techniques remain appealing as powerful candidates in the
study of fracture processes. However serious discrepancies have been reported in the
literature by a number of researchers using the classical interpretation of caustics or
photoe1asticity. Nigam and Shukla (1988) have compared the methods of photoelasticity
and transmission caustics by performing experiments on identical specimens under identical
loading. Their results show that while both methods work well for static problems, the
method of photoelasticity gives values for the dynamic stress intensity factor which vary
by about 30-50% from those obtained through the method of caustics. In this paper, we
have shown by using the Broberg problem, that for transient crack propagation with
constant velocity, the value of the dynamic stress intensity factor obtained through the
classical analysis of caustics can indeed produce differences of that magnitude or even
higher. This provides a qualitative explanation of the different results in Kt{t) obtained
from these two techniques in Nigam and Shukla's paper. It should be pointed out that in
the interpretation of their photoelastic fringes, Nigam and Shukla used a two-dimensional
"higher-order" expansion suggested by Dally et al. (1985). This expansion is based on the
steady-state asymptotic representation of the stresses around the crack tip. As was shown
in this paper, only at the region very close to the crack tip, the transient effects will not be
felt strongly. Outside this region the dynamic transient effects will affect the stress distri
bution. This issue was also discussed by Krishnaswamy et al. (1990) by using the CGS
method. It has also been shown by Rosakis et al. (1991), that the asymptotic expansion of
stresses under the fully transient condition is different from that obtained under the steady
state condition. The steady-state, higher-order expansion can be approximately used only
when the time derivatives ofall the coefficients are negligibly small and the crack-tip velocity
is essentially constant. If these conditions are violated, the results of the steady-state
approximation are questionable. Nonetheless, the use of a higher order steady state expan
sion is bound to be an improvement over the assumption of strict Kt-dominance. As a
result, the values of Kt(t) obtained by photoelasticity in Nigam and Shukla's paper are
expected to be close to the real value of Kt rather than the one obtained by the classical
analysis of caustics.

A long-standing issue of fundamental importance in dynamic fracture research is the
connection between the dynamic fracture toughness, Ktc, and the crack-tip velocity. The
debate, for the most part, has centered around the question of whether a unique, material
dependent relationship exists between Ktc and v. Kobayashi and Dally (1980), Rosakis et
al. (1984) and Zehnder and Rosakis (1990), among others, provide data sets that seem to
indicate that a relation between Ktc and v exists and may reasonably be viewed as a material
property. For most materials tested, Ktc was found to be a weakly increasing function of
crack-tip velocity, for low velocities, followed by a strongly increasing branch as the
crack speed increases. The location of the steep branch depends on the material under
consideration. The conclusion of the existence of a unique curve is usually made in the
presence ofexperimental scatter in both Ktc and vet). In particular, it should be emphasized
here that the data sets provided by Rosakis et al. (1984) and Zehnder and Rosakis (1990)
for AISI carbon steel, if collectively viewed, are characterized by a scatter in Ktc of the
order of 30% for crack-tip velocities in the range of 400-900 m s- I. Nonetheless it should
also be remembered that the dynamic stress intensity factor was inferred by using the
classical analysis of caustics which assumes Kt-dominance and neglects the history depen
dent, transient nature of the field. In addition, it should be recalled that two different
specimen and loading geometries were used. Further, even within one specimen geometry,
the resulting crack growth histories were intentionally varied (by controlling the starter
notch radius), in order to span a representative range of crack-tip velocities. This is a
common practice of most experimental investigations in this field. The above observations
clearly indicate that each of these experiments was characterized by very distincttransient
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crack growth histories. Finally, and as was observed by Zehnder and Rosakis (1990), if
data from a single specimen were used to explore the variation of Kfc and v, very smooth
curves resulted. However if such variations were collectively viewed, then the resulting data
scatter was of the order of 30% in Ktc.

Given the above observations, it is therefore conceivable that the observed maxi
mum scatter between tests may be due to phenomena of the type observed in this paper,
i.e. errors associated with the classical analysis of caustics when strict Kt-dominance is
violated.

Another series of experiments leading to results that have yet to be explained are those
reported by Dahlberg et al. (1980) and Kalthoff (1983), which seem to indicate that the
dynamic fracture toughness could be specimen dependent. The claim of specimen depen
dence is made in the presence of20% differences between curves obtained for each specimen
configuration. In this case, as well, the observations related to the work of Rosakis et al.
(1984) and of Zehnder and Rosakis (1990) are relevant. Here again the crack growth
histories varies from configuration to configuration and from specimen to specimen. As a
result, it may be possible to attribute the apparent specimen dependence of Ktc vs v to the
specimen dependent transient nature of the region where the caustic measurement was
made.

On the basis of some crack propagation experiments in which the optical method of
caustics was used, Takahashi and Arakawa (1987) proposed that the instantaneous value
of dynamic fracture toughness of their material depended on the instantaneous crack-tip
acceleration. As shown in Freund and Rosakis (1992) and Rosakis et al. (1991), however,
the near tip stress field expansion involves crack-tip acceleration in its third or higher order
terms. As a result, caustic patterns obtained from regions where higher order terms are
important will exhibit acceleration effects. However, if caustics from such a region are
interpreted on the assumption of Kt-dominance then it would appear that the instantaneous
value of stress intensity factor, and thus of fracture toughness of the material, depends on
the instantaneous acceleration of the crack tip.

The above comments are also relevant to the works of Kobayashi and Mall (1978)
and Ravi-Chandar and Knauss (1984) who suggested that although an average increasing
trend in Ktc with crack-tip velocity seems to exist, no clear, unique relation between Ktc
and v could be found. Here again the question of transients in the interpretation of
caustics becomes important. As discussed by Freund and Rosakis (1992), this becomes more
transparent in the second reference, since there, the analytical time history ofKt is available
to be compared with the one inferred based on caustics. Indeed it is shown that the classical
analysis of caustics is adequate in predicting Kt(t) during loading, up to the point of crack
initiation. After initiation ofdynamic crack growth differences ofover 50% to the theoretical
value are seen.

We would like to conclude this discussion by pointing out that the above observations
on past experimentation (including our own work) are by no means meant to discredit
the use of caustics as an experimental tool in dynamic fracture studies. On the contrary
we attempt to provide means to improve the accuracy of interpretation of this method
which we believe to be a formidable tool for the study of transient crack problems.
Indeed, given the extraordinary experimental simplicity of the technique and the large
numbers of raw re-analysable data already available, this seemed to be a worthwhile
task. In addition, we believe that the time for taking final positions in the debate regard
ing the existence of a unique Ktc vs v curve has not arrived yet. Our current observations
merely suggest that the existing arguments (including our own in the past) based on exper
imental interpretations (for both photoelasticity and caustics) which neglect the transient
nature of crack growth cannot be conclusive. We believe that further experimental study
or even re-interpretation of raw experimental measurements using the recently available
transient results is required to assess the possibilities and to resolve this issue once and
for all.
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